• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Научно-исследовательские семинары Лаборатории теории рынков и пространственной экономики

16 мая (ул. Союза Печатников, 16, а. 218) на семинаре Лаборатории теории рынков и пространственной экономики будут представлены две работы:
15-30:  Constantine Sorokin  (HSE) «Vote-payoff relationship in electoral competition with probabilistic voting»
17-00: Nizar Allouch (Queen Mary University of London) «Aggregation in Networks».
К участию приглашаются исследователи, преподаватели и студенты, заинтересованные в данной области.

Константин Сорокин (ЛИСОМО, РЭШ, НИУ ВШЭ) представит свою статью «Vote-payoff relationship in electoral competition with probabilistic voting».

Аннотация статьи: 
In this work we look at a two-candidate electoral competition game with a large number of stochastic voters, and examine the implications of how vote shares of candidates are translated into their payoffs. We demonstrate that the vote share-payoff relationship has an effect on equilibrium if and only if the decisions of individual voters are correlated. Our results suggest that the preferences of candidates or parties with respect to shares of vote can have an effect on political competition, as there are many reasons to believe why individual votes should be correlated, such as changes in economic conditions or political scandals.

Низар Аллуч (Университет Королевы Мэри в Лондоне) представит свою статью «Aggregation in Networks»:

Аннотация статьи: We show that a concept of aggregation can hold for games played on networks. We first provide a condition on a group of players in a network, called a module, which ensures that the group can behave like a single player. Furthermore, we show that a partition of players of a game into modules gives rise to an aggregate game, whose Nash equilibria, together with the Nash equilibria of the games played at the module level, correspond to Nash equilibria of the game. Then, we show that fitting aggregate games into each other in an appropriate way provides a hierarchical decomposition of the game, which can inform a recursive computation of Nash equilibria. Finally, we provide an application to the model of public goods in networks to illustrate the usefulness of our results.